
,
Source of Acquisition

NASA Ames Research Center

Model Checking Real Time Java
Using Java PathFinder

Gary Lindstrom*, Peter C. Mehlitz+, and Willem Visser+

*University of Utah, 'NASA Ames Research Center

Abstract

The Real Time Specification for Java (RTSJ) is an augmentation of Java
for real time applications of various degrees of hardness. The central fea-
tures of RTSJ are real time threads; user defined schedulers; asynchronous
events, handlers, and control transfers; a priority inheritance based de-
fault scheduler; non-heap memory areas such as immortal and scoped, and
non-heap real time threads whose execution is not impeded by garbage
collection. The Robust Software Systems group at NASA Ames Research
Center has JAVA PATHFINDER (JPF) under development, a Java model
checker. JPF at its core is a state exploring JVM which can examine
alternative paths in a Java program (e.g., via backtracking) by trying all
nondeterministic choices, including thread scheduling order. This paper
describes our implementation of an RTSJ profile (subset) in JPF, includ-
ing requirements, design decisions, and current implementation status.
Two examples are analyzed: jobs on a multiprogramming operating sys-
tem, and a complex resource contention example involving autonomous
vehicles crossing an intersection. The utility of JPF in finding logic and
timing errors is illustrated, and the remaining challenges in supporting
all of RTSJ are assessed.

1 Overview

The possibility of using Real Time Specification for Java (RTSJ) [fJEG]
software on future missions is under consideration at NASA, for all the
familiar reasons: standardized (Le., platform independent) semantics, a
rich and vigorous marketplace of implementations and tools, and the over-
all software engineering advantages of Java as a type safe object-oriented
programming language. RTSJ is not based on any Java core language
extensions; rather, all its capabilities are conveyed by new classes with
special semantics, albeit with some refinement of semantics for existing
Java classes. This design decision in effect strikes a bargain: less run time

,

predictability, in exchange for language stability. An alternative choice
might have been to enhance the declarative content of the language in
the interest of stronger compile time program validation, as was done for
example with exceptions in Java.

The dual consequence of this design decision is inadequacy of static
analysis for RTSJ software verification and validation, and a correspond-
ing vital need for techniques performing dynamic analysis, e.g., model
checking. We report here on an application of the JAVA PATHFINDER
model checker (JPF) [VHB+03,JPFa] to RTSJ programs, focusing on
the latter’s dynamic, time quantified behavior, with the goal of develop-
ing a tool capable of validating RTSJ applications, ideally to the level of
mission deployability. Our approach emphasizes the central issue of tem-
poral correctness (e.g., threads meeting deadlines) under nondeterministic
choices; correctness of memory usages and asynchronous control flow are
reserved for future work. Thus we are focusing on classical correctness
issues in real time software, rather than issues related to specialized JVM
behavior.

Our approach uses discrete state simulation (DSS) as a basis for mod-
eling time. Real time threads are modeled as ordinary Java threads, con-
strained to run one at a time, i.e., as coroutine’s. Their interactions, e.g.,
through CPU scheduling, are modeled by resource contention techniques
familiar to DSS programming (a summary of DSS concepts is given in
53). This permits execution of programs within our RTSJ profile on any
Java implementation.

However, two important capabilities are provided by analyzing (run-
ning) RTSJ programs under JPF: (a) execution cost logging at the byte-
code level, and (b) alternative execution path exploration via nondeter-
ministic choice selection. Point (a) permits closing an important causality
loop impossible on an ordinary JVM:

thread execution cost + deadline misses -+ miss events -+

event handlers -+ additional thread execution cost

Analyzing such loops is a critical requirement in the validation and
verification of complex RTSJ applications, and is well beyond the capa-
bility of current static analyzers.

2 RTSJ Under JPF: Requirements and Objectives

The first question is clearly what does it mean to model check a.n RTSJ
program? The starting point is to view the RTSJ program as just another

Java program (albeit with a class library with special semantics), and
simply execute it using the model checking vigilance of JPF. This is fine,
except that this presumes the availability of an RTSJ enabled JVM within
JPF, which we do not have.

Unlike a simple Java program, in which the notion of time gener-
ally plays an insignificant role, time in RTSJ programs plays a major
correctness role, e.g., in quantifying real time deadlines. Moreover, an
RTSJ program (the embedded program) must be exercised within an im-
plementation of its environment (the embedding program). In our view,
specifying and constructing such environments are often tasks of diffi-
culty equal to or greater than that of the embedded system. An example
is a flight control system, where a fully accurate embedding system must
model all the dynamics of the aircraft, as is done in a flight simulator.
Hence ensuring that embedding code is correct is as important (or more
so) than ensuring that the embedded code is correct.

We adopted the following goals for model checking RTSJ under J P F :

1. Make no changes to the J P F implementation - clearly, a major soft-
ware engineering win if achievable.

2. Implement the embedding code in Java, and model check the entire
combined system - a major validation win if possible.

3. Deal with time through DSS modeling - a familiar and well under-
stood technology.

4. Implement all RTSJ thread interactions (e.g., priority based schedul-
ing with priority inversion avoidance via priority inheritance) through
resource contention techniques traditional to DSS.

5. Exploit the run time cost accounting capabilities of JPF to detect
deadline misses by real time threads, and to take appropriate actions,
e.g., invoking overrun handlers in the embedded code.

6. Finally, utilize the path coverage capabilities of JPF to locate bugs
involving nondeterminacy and race conditions (e.g., trying all possible
orders of events scheduled at equal simulation times, thereby ensuring
the absence of instant splitting errors in the code). An important
additional benefit is the utility of nondeterministic choice points in
the embedding code in obtaining greater test coverage.

3 Step 1: RTSJ in a Simulation Environment

The first step in model checking RTSJ is to implement a profile of RTSJ
as a set of conventional Java classes. This we have done to a first level of
realism - several features have yet to be implemented, as discussed in $10.

The classes in our implementation include RealtimeThread, PrioritySched-
uler, AsyncEvent, AsyncEventHandler, OneShotTirner, PeriodicTirner and
RelativeTime.

The fundamental concepts of DSS (as developed in the Simula system
of the 1970’s [BDMN73]) can be summarized as follows:

- Individual processes (the traditional terminology - henceforth we will
use thread) are conceptually concurrent, but in fact execute in an
interleaved fashion as coroutines, as mentioned above.

- A thread may be executing, activated, or passivated.
0 An executing thread is the one currently running as a coroutine;

An activated thread is not executing, but is scheduled to do so in
the future at a time indicated its event notice on the simulation’s
event list.
A passivated thread is neither executing nor active; such threads
are typically waiting for some condition to become true, such as
being granted a resource.

- Scheduling operations on threads include activate (schedule), passi-
vate, and hold, which is a compound operation comprising activation
at a later scheduled time time, and passivation.

- The main thread controls the overall simulation by repeatedly de-
queueing from the event list the event notice with the earliest event
time, advancing the simulation clock to the time in that event no-
tice, and notifying the associated thread to run - until the event list
becomes empty, or a global shutdown operation is invoked.

Since ReaItimeThread’s are constrained to run as coroutines, the JVM
scheduler has only one scheduling choice possible, and DSS event based
scheduling is used in an outboard manner to orchestrate thread interleav-
ing. For example, Fig. 1 gives our implementation of hold(RelativeTime t

As mentioned in 52, all RealtimeThread interactions are achieved by
contention for Resource objects, e.g., a CPU. The upshot is that no
changes are necessary to the schedulers of the underlying JVM or JPF
to implement scheduling policies such as priority inheritance with FIFO
ordering within priorities, as required by the default RTSJ scheduler.
Since Java’s real time clock is replaced by the simulation clock, all RTSJ
executions in this implementation are deterministic (repeatable), even if
they use pseudo random methods to draw numbers from probability dis-
tributions (assuming fixed seeds) or offer the option of pseudo randomly
selecting orders of events scheduled at identical times.

1.

public static void hold(RelativeTime t) throws InterruptedException <
RealtimeThread currentkead = (RealtimeThread)Thread.currentThreado;
synchronized (currentkead <

// schedule this thread to run again after hold period
activate(currentThread, clock.getTime0 .add(t)) ;

// signal main thread to perform next event in simulation cycle
currentlkead. not if y 0 ;

// wait for hold to be over
currentThread.wait 0 ;

1
1

Fig. 1. The implementation of hold(t).

Nabve JVM I

Fig. 2. RTSJ architecture under JPF.

4

Embedded code written in our RTSJ profile, together with its embed-
ding test code using DSS facilities including simulated time, comprise an
ordinary Java program- that can be run under any Java implementation
(without accurate run time modeling, however). The next step is to run
the combined program under JPF, with the following additional benefits:

- Nondeterministic state exploration, including all orderings of events
scheduled for the same instant, and choice points in the embedding
code, and

- Cost accounting, with overrun detection and invocation of appropriate
handiers, as described beiow.

Our adaptation of J P F is being done in two stages. The first stage
exploits two customization features already available in JPF: its JVM

Step 2: Combining RTSJ and JPF

listener interface [JPFb], and its Model Java Interface (MJI) [JPFc] (both
features are utilized in the Control Program box in Fig. 2).

- JVM listener interface: Logging run time (albeit idealized) for Java
code under JPF can be done using JPF’s JVM listener interface,
which invokes control program listener methods on various occur-
rences, including the execution of each byte code instruction. We use
a very simple accounting technique here, whereby each byte code is
assigned a fixed run time in a look up table. By this technique the
execution time (summed byte code costs) from the start to the end
of a RealtimeThread can be accumulated. Similarly, this interface is
used to detect execution path backtracking by the JPF JVM, so that
path specific accounting data structures can be correspondingly back-
tracked.

- Model Java interface: The MJI interface permits Java code executing
under JPF’s specialized JVM to access the underlying JVM for access
to native facilities. This turns out to be crucial in arranging that run
time cost logging, which executes outside the JPF JVM, is accessible
to the RTSJ application code, which executes within the JPF JVM.
For example, suppose an AsyncEventHandler invocation has a run time
in excess of its stipulated limit, as observed through an MJI native
method. This can trigger the invocation of an overrun event handler,
which must execute within the JPF JVM.

The second and more difficult stage of adapting JPF for RTSJ con-
cerns features that must be implemented by JVM modifications. These
features, which include non-heap memory areas and non-heap real time
threads, as well as asynchronous control transfers, are discussed in $7.1.

.

5 Scheduling Policies

We now give more details on our control of scheduling by means of re-
source contention policies. We illustrate our approach by discussion of
five representative policies: FIFO, priority, priority inheritance, priority
ceiling, and preemption. The first two are naive policies inviting priority
inversion; the third is obligatory in RTS J’s default scheduler; the fourth
is an explicit option, and the RTSJ specification is silent on the fifth.

FIFO: This simplistic policy guarantees fairness, but ignores thread
priority.

Priority: Here threads waiting for a resource are selected by (fixed)
priority first, and then by FIFO within equal priorities. Ths policy, as
well as FIFO above, provides no defense against priority inversion.

Priority inheritance (PI): This well known policy works by increasing
the priority of the thread possessing a P I resource to equal the maximum
priority of any thread waiting for that resource (its dynamic priority).
There are two perhaps unobvious consequences of this policy:

1. Since a thread may possess multiple resources, its dynamic priority is
based on the maximum priority of any thread waiting for any of the
resources it possesses, and

2. The priorities involved are of course dynamic priorities, so an at-
tempted seize of a resource held by a thread waiting for another re-
source can cause cascaded priority inheritance effects (and conversely
for release’s).

Priority ceiling (PC): A PC resource has a fixed priority (its ceiling
priority) which is used to temporarily elevate the priority of any thread
possessing it. If a thread has a dynamic priority greater than the resource’s
ceiling priority, an attempt to seize the resource causes a PriorityCeilingEx-
ception to be thrown (the absence of which is an important verification
condition).

Preemption: A resource managed under this policy does not change
a thread’s priority when seized. A thread seizing a resource of ths kind
only waits if the resource is currently held, and the thread’s priority is
less than or equal to the priority of the thread holding the resource. If the
thread’s priority is greater that that of the thread holding the resource,
it steals the resource.

Modeling the first four policies is straightforward DSS programming.
The fifth policy, preemption, is a bit trickier, because possession periods
(e.g., modeling computational activity by a thread using a CPU resource)
can be prematurely ended when the resource is stolen by a higher pri-
ority thread. This can be implemented by wrapping such hold method
calls in loops that sum actual hold times, and re-exert hold invocations
until the stipulated hold time is attained. All five policy implementations
easily generalize to multiprocessing systems by managing pools of CPU
resources.

6 Applications

We now discuss application of our RTSJ implementation in JPF to two
example programs. The first is a simple model of a multiprogramming
operating system (OS), while the second is a complex resource contention
example involving autonomous cars crossing an intersection. The utility
of JPF in finding logic and timing errors in each is illustrated.

\

6.1 Mult iprogramming Operat ing System

This example models a simple multiprogramming computer system, where
jobs (as RealtimeThread’s) contend for a CPU, which is a resource of one
of the five types discussed in 95. Of these, preemption is the most in-

. teresting, because (i) it guarantees absence of priority inversion, (ii) it is
pervasive in modern operating systems, (iii) its behavior on realistic job
mixes defies static analysis, and consequently (iv) real time OS’S typically
do not employ it, despite the appeal of (i).

CPU
FIFO
Priority
PC (6)
PI
Preempt

Job1 (6) Job2 (5) Job3 (4) Job4 (3) Time
3681 / 72% / 6.0 3780 / 73% / 5.0 3879 / 74% / 4.0 3979 / 74% / 3.0 3979
1891 / 46% / 6.0 1990 / 49% / 5.0 3880 / 74% / 4.0 3979 / 74% / 3.0 3979
1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.5 3979 / 74% / 3.7 3979
1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.0 3979 / 74% / 3.2 3979
1004 / 0% / 6.0 2008 / 49% / 5.0 3012 / 66% / 4.0 4015 / 74% / 3.0 4015

A fixed job mix was analyzed using our RTSJ implementation in JFP,
using CPU’s of each of our five resource types. The results are given in
Fig. 3. In this scenario, there are four jobs that are identical in behavior
(10 compute / wait cycles), with identical wait times between cycles. They
are all started at time zero. This simple stress test keeps the CPU 99%
busy independent of its resource type (the simulation ends after the last
job terminates). The following observations can be made of the results in
Fig. 3:

- The FIFO CPU gives the most fair service to the four jobs - because
it ignores priority.

- The Priority, Priority Ceiling, and Priority Inheritance CPUs deliver
identical service, because the priority of a job only affects its com-
petitive position when more than one job is waiting for the CPU,
which does not occur in this simple scenario (an example of priority
improving service is given in $6.2).

- Jobs under the Preemptable CPU h i s h strictly according to priority.
However, the overall completion time is slightly longer, due to the
additional scheduling overhead.

When run under JPF with nondeterminism turned on, there are 4! =
24 choices for activation order at time zero for the four jobs (the statis-
tically rare case of events scheduled at exactly the same time does not
occur after simulation start). Priority inversion was detected in all 24
paths under FIFO and Priority CPUs, and on no paths under Priority
Ceiling (6), Priority Inheritance, and Preemptable CPUs.

6.2 Intersection Crossing

The example in 56.1 emphasizes the effect of role of resource types in
thread scheduling. Our second application is a more complex example,
illustrating more advanced features of our RTSJ implementation in J P F .
This models autonomous cars transiting an intersection, where the cars
(real time threads) can drive straight through, turn right, or turn left.
Cars are given priorities chosen from 1 to 8.

The intersection is modeled by four sectors (Nw, NE, SW, S E) , each
of which is a resource. For a car driving north, turning right requires
possession of sector SE; driving straight requires SE and NE (granted
simultaneously, to avoid deadlock; SE is released half way through), and
turning left involves (i) seizing SE and NE together; (ii) releasing SE, (iii)
seizing N W , (iv) releasing NE and NW. The net effect is a model of an
uncontrolled intersection of two lane roads, where cars follow the common
conventions that a car can drive straight through if the car on its left (if
any) is not driving straight through or turning left, the car on its right
(if any) is not driving either straight, left or right, and the opposing car
(if any) is not turning left.

These rules are complex but deadlock bee, which as been confirmed
(for specific scenarios) by exhaustive search using JPF on initial event
scheduling orders. By comparison, deadlocks caused by the naive policy
of seizing all of SE, NE, and W f o r a northbound car making a left turn
(and correspondingly for cars heading in other directions) were quickly
located by JPF.

Car speed is governed by car priority, in the following manner. The
time required by a car to transit a sector is t = 100 sec/p, where p is the
car’s priority. At the extremes, p = 1 yields a sector transit time of 100
seconds, and p = 8 yields 12.5 seconds. Experiments were run using four
resource types for sectors: FIFO, priorit.y, pri0rit.y ceiling 8 , and priority
inheritance. There are ready intuitions for each of these cases: FIFO is
round robin, priority is fastest vehicle first, priority ceiling is a minimum
sector speed, and priority inheritance is when one sees an ambulance

Sector type
FIFO
Priority
PC(8)
PI

Fig. 4. Intersection results using four sector resource types. (5/N/S) indicates that Car
0 has priority 5, is heading north, and going straight, etc. Car 0 and Car 1 start at
time 0; Car 2 has a start delay of 5 seconds. The figures in each column are completion
time in seconds, and percentage wait time.

Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L)
33 10% 183 1 18% 49 / 21%
33 1 0 % 183 1 18% 49 1 21%
25 1 0% 63 / 40% 45 115%
30 1 0 % 180 1 16% 46 1 17%

rapidly approaching, and speeds up accordingly. The preemption case is
physically impossible!

Sample results are shown in Fig. 4. Note that all cars benefit from
higher priority under priority ceiling, and marginally so under priority
inheritance.

The utility of run time cost logging under JPF was demonstrated
by giving each car a maximum lifetime (its release deadline in RTSJ’s
vocabulary). If the deadline is set uniformly at 75 seconds, under priority
inheritance the RTSJ miss handler for Car 1 is invoked, but not for Cars
0 or Car 2.

The above analysis can be accomplished under both native Java and
JPF , since it is based solely on simulated time. By contrast, analysis of
miss handler behavior in RTSJ programs can only be exercised under
JPF , where a listener method in our control program records each byte
code execution in the subject program. To demonstrate this capability,
an onboard computer was postulated for each car (its autonomous con-
troller), and a cycle soaker method was invoked during passage through
each sector (arbitrarily set at 100,000 double divides, with 100 nanosec-
ond cost per byte code; a total of 1,400,024 DDIV’s are observed in the
deterministic case). If a cost limit of 350 milliseconds is imposed, under
priority inheritance Car 0 terminates without handler invocation, Car 2
terminates with cost overrun handler invocation, and Car 1 terminates
with both handlers invoked.

7 Critique of JPF

This application breaks new ground for JAVA PATHFINDER in its focus
on quantified time as a program correctness issue. Much as been learned
about its flexibility in supporting this new and unanticipated correctness

dimension, as well as the limits of our approach that implements RTSJ
without making any modifications to JPF.

7.1

In $4 we indicated two areas pose more difficult challenges, which we
believe can only be implemented by JVM modification:

Features Not Easily Implemented Under This Approach

- ScopedMemoryArea’s and NoHeapReaItimeThread’s, which deal with
non garbage collected MemoryArea’s, and

- Asynchronous transfers of control (ATC), e g , threads that implement
the Interruptible interface and methods that throw Asynchronouslyln-
terrupted Exception.

While it may be possible in principle to implement at least the first
these features using per-bytecode analysis in a JPF listener method, the
overhead of this approach is likely to be prohibitive.

7.2 Opportunities For Application of Other JPF Features

This project thus far has used only basic JAVA PATHFINDER features.
Several advanced features of J P F offer attractive opportunities for in-
creased utility in verifying RTSJ programs.

Heuristic search: The default program path exploration strategy is
depth first search, using backtracking. Other strategies, such as bounded
breadth-first search, can selectively search longer paths due to elimination
of the backtrack stack [GV04]. Several criteria for preferring paths in
RTSJ programs with higher error potential are evident, such as favoring
states with threads whose extrapolated completion time is beyond their
stipulated deadlines.

State abstraction: By default JPF saves all previously encountered
program states and performs precise equality checks to detect re-encountered
states. This policy has several consequences, including (i) significant space
overhead, and (ii) inability to recognize states that insignificantly vary
from previously seen states. In particular, the extremely fine represen-
tation of time in RTSJ (to nanosecond precision), exacerbates (ii). To
illustrate, consider state abstraction methods focusing on the core data
structure of our system, the scheduled event list. Opportunities for ab-
straction here include fuzz on scheduled event times, e.g., equality to res-
olution of say 100 nanoseconds, or even ignoring ev&t times altogether,
and considering two event lists to be equal if they reference the same real

time threads positioned at the same execution point (say, method and
byte code address).

Symbolic execution: JPF interfaces to a constraint system that can
solve equations involving linear inequalities [SKV03]. This presents the
possibility of asserting constraints on scheduled event times.

- For example, it could be asserted that event el should run at time
to + t (e 2) , where t (e) is the scheduled time of an event e , and t (e2) is
not yet known, i.e., is symbolic. When t (e 2) becomes bound, el would
be scheduled at a concrete time.

- Now suppose two scheduled events el and e2 have symbolic event
times t(e1) and t(e2), and the event list is otherwise empty. We then
have two options to pursue nondeterministically: (a) el runs next,
t (e1) 5 t (e2) is asserted, and the simulation clock is set (symbolically)
to t (e l) , or (b) symmetrically, e2 runs next, t (e 2) 5 t (e1) is asserted,
and the simulation clock is set to t (e2) .

Fault driven automatic test case generation: The execution driven
symbolic constraint refinement technique just sketched can be the basis
for finding necessary and sufficient conditions that lead to specific faults
[VPK04]. For example, suppose the real time code is modeling the per-
formance of an aircraft pre-landing checklist. There have been published
accident scenarios where a mandatory aircraft response, e.g., completion
of landing gear deployment, did not occur in time to ensure the safety
of the next step in the checklist, and the pilot under time pressure (the
ground is approaching) inappropriately proceeded [Deg04]. Conditions re-
vealing such flaws in real time checklist procedures might be determined
by symbolic execution in this manner.

8 Performance

We now present performance figures for our RTSJ profile implementation
in JPF. All performance figures are taken from executions in the Eclipse
Java IDE with a heap size of one gigabyte on a Pentium 2 laptop with
768MB of RAM.

Our system can be run in five modes: native Java with deterministic
or pseudo random choice selection, or JPF with deterministic, pseudo
random, or nondeterministic choice selection. We have tested our system
in all five modes on the applications presented in $6. Run time figures for .

the multiprocessing operating system example in f j 6.1 under determinis-
tic mode are 120ms for native Java vs. 6,257ms under JPF (the pseudo

random mode numbers are analogous). These absolute numbers are not
important; instead, their relative magnitudes are more informative. Two
observations emerge: (a) the native Java implementation is quite fast,
and (b) the JPF implementation is slower by a factor of about 50 - but
it must be remembered that under JPF an interpretive JVM (written
in Java) is being employed, cost logging presents a linear execution time
overhead, and state saving is performed to support exploration of alter-
native execution paths (not exploited in the deterministic and pseudo
random cases).

[CPU type lRun time]

Priority 80.9 sec
91.6 sec
99.6 sec

Fig. 5 . Run times for the multiprogramming example under JPF nondeterministic
search (backtracking over 24 paths).

To illustrate the cost of JPF state exploration, the CPU example was
run under nondeterminism, exploring the 4! = 24 choices for activation
order at time zero for the four jobs discussed in 5 6.1 Results are shown
in Fig. 5.

9 Related Work

Model checking of timed automata representations has become very popu-
lar (see [BY041 for a good overview) for the analysis of real time systems.
Our approach differs in that it uses a model checker to analyze RTSJ
programs (a richer notation), but we only check safety properties (e.g.,
classic Java errors such as uncaught exceptions and assertion violations
as well as RTSJ properties such as priority inversion).

It has been reported that more than 3000 people have used the RTSJ
reference implementation or a commercial RTSJ-compliant JVM to create
application prototypes LOCO^]. Tools are available to benchmark RTSJ
implementations lCSO21.

Model checking is a vigorously evolving research area. Examples of
model checking applied to Java programs are Bandera [Ban], Bogor [DHHR05],
and the work of Bart Jacobs et al. on JavaCard verification [JMR04]. A

closely related area is run time verification of Java systems [KKLSOl].
Capability for dealing with time in model checkers has also been evolv-
ing rapidly, often through monitoring of event sequences with respect to
assertions in linear time logic (LTL) [Hav]. RTSJ itself is drawing critical
and insightful analysis, such as the work on Ravenscar [Bur,Wel04].

10 Status and Continuing Work

Our implementation of RTSJ within a DSS environment is operational.
RTSJ features supported include RealtimeThread’s, AsyncEvent’s and AsyncEven-
tHandler’s, cost overrun handlers, binding of external happenings to events,
simulated and real time Clock’s, and various timers, e.g., OneShotTimer
and PeriodicTimer, and PhysicalMemoryArea’s. API documentation includ-
ing designation of individual classes and methods not implemented is
publicly available [Lin].

Continuing work includes:

1. Maximizing the RTSJ profile we can implement without JVM modi-
fication,

2. Development of a more realistic, calibrated execution cost model, tak-
ing into account effects of garbage collection, JIT compilation, class
loading, etc.,

3. Development of more challenging test cases, with assessment of the
scalability of RTSJ under JPF,

4. Extending JPF’s JVM (written Java) to include the remaining crucial
RTSJ features summarized in 7.1 (probably using Ravenscar’s profile
as a guide), and

5. Exploiting advanced JPF features to increase the scale of RTSJ sys-
tems that can be analyzed, through techniques such as search heuris-
tics, state abstraction and symbolic constraint analysis [PPVO5] as
discussed in § 7.2.

Acknowledgements

Michael R. Lowry conceived this project and is providing the resources.
The critical comments of Robert E. Filman are gratefully acknowledged.

References

(Ban] http://bandera.projects.cis.ksu.edu/.

[BDMN73] G. M. Birtwistle, 0.-J. Dahl, B Myhrhaug, and K. Nygaard. Szmula BE-
GIN. Auerbach/Studentliteratur, Philadelphia, 1973.

[Bur] Alan Burns. The Ravenscar profile.
http://polaris.dit.upm.es/-ork/documents/RPspec.pdf.

(BY041 Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In W. Reisig and G. Rozenberg, editors, Lecture Notes on Con-
currency and Petra Nets. Springer-Verlag, 2004. LNCS 3098.
Angelo Corsaro and Douglas C. Schmidt. Evaluating real-time java features
and performance for red-time embedded systems. In Proc. 8th Real-Time
and Embedded Technology and Applicatzons Symposium. IEEE Computer
Society, September 24-27, 2002.

[Deg04] Asaf Degani. Taming HAL: Deszgning Interfaces Beyond 2 U O l . Palgrave
Macmillan, 2004.

[DHHR05] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby. Building

[CSO2]

[fJEG]
[GV04]

[Havl

[JMR04]

[JPFa]
[JPFb]
[JPFc]

-
your own model checker using the bogor extensible model checking frame-
work. In I n Proc. f7 th Conference on Computer-Aided Verijkation (CAV
20U5), 2005.
The Real-Time for JavarM Expert Group. https://rtsj.dev.java.net.
A. Groce and W. Visser. Heuristics for model checking Java programs.
International Journal on Software Tools for Technology Ransfer, 2004.
Klaus Havelund. Eagle Flier, a rule-based runtime verification framework.
http://yangtze.cs.uiuc.edu/-ksen/eagle/.
B. Jacobs, C. Marche, and N. Rauch. Formal verification of a commer-
cial smart card applet with multiple tools. In C. Rattray, S. Maharaj,
and C. Shankland, editors, Algebraic Methodology and Software Technology
(AMAST’Od), pages 21-22. Springer LNCS 3116 2004.
http://javapathfinder.sourceforge.net/.
http://ase.arc.nasa.gov/jpf/Listeners. html.
MJI - the Model Java Interface, http://ase.arc.nasa.gov/jpf/MJI.html.

[KKLSOl] Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-
Mac: a run-time assurance tool for Java. In First International Workshop
on Run-time Verification. Paris, France, July 23, 2001. Electronic Notes in
Theoretical Computer Science, vol. 55 No. 2.

[Lin] Gary Lindstrom. RTSJ- JPF API. http://www.cs.utah.edu/-gary/RTSJ/doc/.
[Loco41 C. Douglass Locke. Real-time java moving into the mainstream. RTC

Journal, January 2004.
[pPVO5] Corina Pasareanu, Radek Pelanek, and Willem Visser. Concrete model

checking with abstract matching and refinement. In In Proc. 17th Confer-
ence on Computer-Aided Verification (CAV 2005), 2005.

[SKV03] C. S. Parareanu S. Khurshid and W. Visser. Generalized symbolic execution
for model checking and testing. In Proceedings of TACAS, April 2003.

[VHBt03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking
programs. Automated Software Engineering Journal, 10(2), April 2003.

[VPK04] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input
generation with Java PathFinder. In Proceedings of ISSTA, July 2004.

[We1041 Andy Wellings. Concunent and Real-Time Programming in Java. John
Wiley 8~ Sons, Ltd., Chichester, \IVest Sussex, England, 2004.

